inconsistent explicit time-step splitting in two-way nesting

General scientific issues regarding ROMS

Moderators: arango, robertson

Post Reply
Message
Author
xupeng66
Posts: 79
Joined: Sat Mar 06, 2010 3:38 pm
Location: University of Washington

inconsistent explicit time-step splitting in two-way nesting

#1 Unread post by xupeng66 »

Hello,

Here is follow-up on a problem I posted previously. I did a two-way nested simulation of the outward propagation of surface gravity waves from the a collapsed sea-surface mound (see attached animation). The horizontal resolutions of the small domain is 5 times that of the large domain. There is no forcing other than the surface mound in the initial conditions. The seafloor is flat and has a depth of 100 m.

In my previous post, I mentioned an issue of emergency bailout when using MPI. I took the advice from the developer and changed the grid size of the two nested domains so that the numbers of grid points on each side are uneven. This had first appeared to solve the problem as the MPI run finished without bailout. However, it seemed that I celebrated too soon because the same bailout issue occurred when I tried a different number of processors. I then did a debug run and the following is the diagnostics, which report 'illegal model configuration' and ' CHECKDEFS - explicit time-step splitting is inconsistent'.

Another issue I noticed is that, although there is no stratification in temperature, which is set to 2 degree C in initial conditions for both grids, anomalies appear to show up in the small domain as can be seen in the second animation, which shows the temperature anomaly (absolute minus 2 degree) at 20 m over the small, fine-resolution domain. Those numerical anomalies in temperature show up in both serial and MPI runs and reducing the time step used for the small domain does not seem to help.

I think those temperature anomalies are probably caused by the error in model configuration, but I have no idea how to further diagnose the problem. Could anyone give some advice?

Thanks in advance!


Code: Select all

--------------------------------------------------------------------------------
 Model Input Parameters:  ROMS/TOMS version 3.9  
                          Sunday - June 21, 2020 - 12:13:26 PM
--------------------------------------------------------------------------------

 A Gaussian Mound Collapsing and Generating Surface Gravity Waves

 Operating system : Linux
 CPU/hardware     : x86_64
 Compiler system  : ifort
 Compiler command : /vortexfs1/apps/intel/compilers_and_libraries_2018.2.199/linux/bin/intel64/ifort
 Compiler flags   : -fp-model precise -heap-arrays -g -check all -check bounds -traceback -check uninit -warn interfaces,nouncalled -gen-interfaces 

 GIT Root URL     : 
 GIT Revision     : 
 SVN Root URL     : https://www.myroms.org/svn/src/trunk
 SVN Revision     : 1014

 Local Root       : /vortexfs1/scratch/gxu/ROMS_test/Source
 Header Dir       : /vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include
 Header file      : gauss_mound.h
 Analytical Dir   : /vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include

 Resolution, Grid 01: 128x140x10,  Parallel Threads: 1,  Tiling: 1x1


 Physical Parameters, Grid: 01
 =============================

        160  ntimes            Number of timesteps for 3-D equations.
     90.000  dt                Timestep size (s) for 3-D equations.
         30  ndtfast           Number of timesteps for 2-D equations between
                                 each 3D timestep.
          1  ERstr             Starting ensemble/perturbation run number.
          1  ERend             Ending ensemble/perturbation run number.
          0  nrrec             Number of restart records to read from disk.
          T  LcycleRST         Switch to recycle time-records in restart file.
          0  nRST              Number of timesteps between the writing of data
                                 into restart fields.
          1  ninfo             Number of timesteps between print of information
                                 to standard output.
          T  ldefout           Switch to create a new output NetCDF file(s).
          5  nHIS              Number of timesteps between the writing fields
                                 into history file.
          0  nQCK              Number of timesteps between the writing fields
                                 into quicksave file.
          F  LuvSponge         Turning OFF sponge on horizontal momentum.
 3.0000E-04  rdrg              Linear bottom drag coefficient (m/s).
 3.0000E-03  rdrg2             Quadratic bottom drag coefficient.
 2.0000E-02  Zob               Bottom roughness (m).
   1025.000  rho0              Mean density (kg/m3) for Boussinesq approximation.
      0.000  dstart            Time-stamp assigned to model initialization (days).
       0.00  time_ref          Reference time for units attribute (yyyymmdd.dd)
 0.0000E+00  Znudg             Nudging/relaxation time scale (days)
                                 for free-surface.
 0.0000E+00  M2nudg            Nudging/relaxation time scale (days)
                                 for 2D momentum.
 5.0000E+02  obcfac            Factor between passive and active
                                 open boundary conditions.
          F  VolCons(1)        NLM western  edge boundary volume conservation.
          F  VolCons(2)        NLM southern edge boundary volume conservation.
          F  VolCons(3)        NLM eastern  edge boundary volume conservation.
          F  VolCons(4)        NLM northern edge boundary volume conservation.
      1.000  gamma2            Slipperiness variable: free-slip (1.0) or 
                                                      no-slip (-1.0).
          F  LuvSrc            Turning OFF momentum point Sources/Sinks.
          F  LwSrc             Turning OFF volume influx point Sources/Sinks.
          F  LsshCLM           Turning OFF processing of SSH climatology.
          F  Lm2CLM            Turning OFF processing of 2D momentum climatology.
          F  LnudgeM2CLM       Turning OFF nudging of 2D momentum climatology.

          T  Hout(idFsur)      Write out free-surface.
          T  Hout(idUbar)      Write out 2D U-momentum component.
          T  Hout(idVbar)      Write out 2D V-momentum component.

 Output/Input Files:

               Output Restart File:  roms_rst.nc
               Output History File:  gauss_mound_his_coarse.nc
                   Input Grid File:  ./input/gauss_mound_grid_uniform_coarse2.nc
    Nesting grid connectivity File:  ./input/gauss_mound_ngc_refine2.nc
      Input Nonlinear Initial File:  ./input/gauss_mound_ini_coarse2.nc
  ROMS I/O variables Metadata File:  ./include/varinfo.dat

 Resolution, Grid 02: 110x160x10,  Parallel Threads: 1,  Tiling: 1x1


 Physical Parameters, Grid: 02
 =============================

       1600  ntimes            Number of timesteps for 3-D equations.
      9.000  dt                Timestep size (s) for 3-D equations.
         30  ndtfast           Number of timesteps for 2-D equations between
                                 each 3D timestep.
          1  ERstr             Starting ensemble/perturbation run number.
          1  ERend             Ending ensemble/perturbation run number.
          0  nrrec             Number of restart records to read from disk.
          T  LcycleRST         Switch to recycle time-records in restart file.
          0  nRST              Number of timesteps between the writing of data
                                 into restart fields.
          1  ninfo             Number of timesteps between print of information
                                 to standard output.
          T  ldefout           Switch to create a new output NetCDF file(s).
         50  nHIS              Number of timesteps between the writing fields
                                 into history file.
          0  nQCK              Number of timesteps between the writing fields
                                 into quicksave file.
          F  LuvSponge         Turning OFF sponge on horizontal momentum.
 3.0000E-04  rdrg              Linear bottom drag coefficient (m/s).
 3.0000E-03  rdrg2             Quadratic bottom drag coefficient.
 2.0000E-02  Zob               Bottom roughness (m).
   1025.000  rho0              Mean density (kg/m3) for Boussinesq approximation.
      0.000  dstart            Time-stamp assigned to model initialization (days).
       0.00  time_ref          Reference time for units attribute (yyyymmdd.dd)
 0.0000E+00  Znudg             Nudging/relaxation time scale (days)
                                 for free-surface.
 0.0000E+00  M2nudg            Nudging/relaxation time scale (days)
                                 for 2D momentum.
 5.0000E+02  obcfac            Factor between passive and active
                                 open boundary conditions.
          F  VolCons(1)        NLM western  edge boundary volume conservation.
          F  VolCons(2)        NLM southern edge boundary volume conservation.
          F  VolCons(3)        NLM eastern  edge boundary volume conservation.
          F  VolCons(4)        NLM northern edge boundary volume conservation.
      1.000  gamma2            Slipperiness variable: free-slip (1.0) or 
                                                      no-slip (-1.0).
          F  LuvSrc            Turning OFF momentum point Sources/Sinks.
          F  LwSrc             Turning OFF volume influx point Sources/Sinks.
          F  LsshCLM           Turning OFF processing of SSH climatology.
          F  Lm2CLM            Turning OFF processing of 2D momentum climatology.
          F  LnudgeM2CLM       Turning OFF nudging of 2D momentum climatology.

          T  Hout(idFsur)      Write out free-surface.
          T  Hout(idUbar)      Write out 2D U-momentum component.
          T  Hout(idVbar)      Write out 2D V-momentum component.

 Output/Input Files:

               Output Restart File:  roms_rst.nc
               Output History File:  gauss_mound_his_fine.nc
                   Input Grid File:  ./input/gauss_mound_grid_uniform_fine2.nc
    Nesting grid connectivity File:  ./input/gauss_mound_ngc_refine2.nc
      Input Nonlinear Initial File:  ./input/gauss_mound_ini_fine2.nc
  ROMS I/O variables Metadata File:  ./include/varinfo.dat

 Tile partition information for Grid 01:  128x140  tiling: 1x1

     tile     Istr     Iend     Jstr     Jend     Npts

        0        1      128        1      140    17920

 Tile partition information for Grid 02:  110x160  tiling: 1x1

     tile     Istr     Iend     Jstr     Jend     Npts

        0        1      110        1      160    17600

 Tile minimum and maximum fractional coordinates for Grid 01:
   (interior points only)

     tile     Xmin     Xmax     Ymin     Ymax     grid

        0     0.50   129.50     0.50   141.50  RHO-points

        0     0.00   129.00     0.50   141.50    U-points

        0     0.50   129.50     0.00   141.00    V-points

 Tile minimum and maximum fractional coordinates for Grid 02:
   (interior points only)

     tile     Xmin     Xmax     Ymin     Ymax     grid

        0    -2.50   112.50    -2.50   162.50  RHO-points

        0    -3.00   112.00    -2.50   162.50    U-points

        0    -2.50   112.50    -3.00   162.00    V-points

 Lateral Boundary Conditions: NLM
 ============================

 Variable               Grid  West Edge    South Edge   East Edge    North Edge
 ---------              ----  ----------   ----------   ----------   ----------

 zeta                     1   Chapman Imp  Chapman Imp  Chapman Imp  Chapman Imp
                          2   Nested       Nested       Nested       Nested

 ubar                     1   Shchepetkin  Shchepetkin  Shchepetkin  Shchepetkin
                          2   Nested       Nested       Nested       Nested

 vbar                     1   Shchepetkin  Shchepetkin  Shchepetkin  Shchepetkin
                          2   Nested       Nested       Nested       Nested

 Activated C-preprocessing Options:

 GAUSSIAN_MOUND          A Gaussian Mound Collapsing and Generating Surface Gravity Waves
 ANA_BTFLUX              Analytical kinematic bottom temperature flux
 ANA_FSOBC               Analytical free-surface boundary conditions
 ANA_M2OBC               Analytical 2D momentum boundary conditions
 ANA_SMFLUX              Analytical kinematic surface momentum flux
 ANA_STFLUX              Analytical kinematic surface temperature flux
 ASSUMED_SHAPE           Using assumed-shape arrays
 DJ_GRADPS               Parabolic Splines density Jacobian (Shchepetkin, 2002)
 DOUBLE_PRECISION        Double precision arithmetic numerical kernel.
 NESTING                 Nesting grids: Composite and Refinement
 NONLINEAR               Nonlinear Model
 !ONE_WAY                Two-way nesting in refinement grids
 PROFILE                 Time profiling activated
 RADIATION_2D            Use tangential phase speed in radiation conditions
 !RST_SINGLE             Double precision fields in restart NetCDF file
 UV_ADV                  Advection of momentum
 UV_COR                  Coriolis term
 UV_QDRAG                Quadratic bottom stress

 CHECKDEFS - explicit time-step splitting is  inconsistent.
             Change parameter NDTFAST to unity.

 CHECKDEFS - explicit time-step splitting is  inconsistent.
             Change parameter NDTFAST to unity.
 Found Error: 05   Line: 1210     Source: ROMS/Utility/inp_par.F
 Found Error: 05   Line: 112      Source: ROMS/Drivers/nl_ocean.h

 Elapsed CPU time (seconds):


>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

 Dynamic and Automatic memory (MB) usage for Grid 01:  128x140  tiling: 1x1

     tile          Dynamic        Automatic            USAGE

        0             3.87             6.03             9.90

      SUM             3.87             6.03             9.90

 Dynamic and Automatic memory (MB) usage for Grid 02:  110x160  tiling: 1x1

     tile          Dynamic        Automatic            USAGE

        0             0.57             5.94             6.50

      SUM             0.57             5.94             6.50

    TOTAL             4.43            11.97            16.41

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 ROMS/TOMS - Output NetCDF summary for Grid 01:

 ROMS/TOMS - Output NetCDF summary for Grid 02:
 Found Error: 05   Line: 334      Source: ROMS/Utility/close_io.F

 ROMS/TOMS - Configuration error ..... exit_flag:   5


 ERROR: Illegal model configuration.
Attachments
temp_20.000000_gauss_mound_fine_serial_2D.gif
temp_20.000000_gauss_mound_fine_serial_2D.gif (353.8 KiB) Viewed 7490 times
gauss_mound_eta_nested2.gif
gauss_mound_eta_nested2.gif (1022.41 KiB) Viewed 7490 times

User avatar
arango
Site Admin
Posts: 1368
Joined: Wed Feb 26, 2003 4:41 pm
Location: DMCS, Rutgers University
Contact:

Re: inconsistent explicit time-step splitting in two-way nesting

#2 Unread post by arango »

Well, the error is telling your problem, if you think carefully about it. I assume that you previously defined SOLVE3D. Now, it is undefined, and you are solving the shallow-water equations of ROMS where you must have NDTFAST =1 for all nested grids, and you have NDTFAST = 30 :!: If you don't understand that, you need to read the literature about what the explicit time-step splitting solution of the shallow-water equations means and why. By the way, if SOLVE3D is undefined, there are NOT tracers in the ROMS governing equations. So, I don't know how you can plot the temperature from such a solution! It is impossible for the distributed version of ROMS to write out the temperature in a shallow-water configuration that only runs the step2d kernel. When in doubt, check the *.f90 files in the Build_roms subdirectory. Those files only include the code compiled according to your CPP options.

xupeng66
Posts: 79
Joined: Sat Mar 06, 2010 3:38 pm
Location: University of Washington

Re: inconsistent explicit time-step splitting in two-way nesting

#3 Unread post by xupeng66 »

Thanks again for your feedback, Arango. Those animations were generated from a serial run that finished without apparent blow up. The error message was actually from a debug run, which I now realize was in barotropic mode by default. So I now see that the error message is not related to the numerical anomalies in temperature.

On the other hand, when I run the same simulation using MPI with only one processor, the run quickly blew up within the first few time steps as indicated in the on-screen output below. When I use more than more processor, the blow up still happened but later. I think those numerical anomalies in temperature from the serial run are likely related to the cause of the blow up when using MPI.

Maybe this is a telltale sign that the two-way nested grids were not set up properly?

--------------------------------------------------------------------------------
Model Input Parameters: ROMS/TOMS version 3.9
Tuesday - June 23, 2020 - 12:59:28 PM
--------------------------------------------------------------------------------

A Gaussian Mound Collapsing and Generating Surface Gravity Waves

Operating system : Linux
CPU/hardware : x86_64
Compiler system : ifort
Compiler command : /vortexfs1/apps/openmpi-3.0.1-intel/bin/mpif90
Compiler flags : -fp-model precise -heap-arrays -ip -O3 -traceback -check uninit
MPI Communicator : 0 PET size = 1

Input Script : include/roms_gauss_mound.in

GIT Root URL :
GIT Revision :
SVN Root URL : https://www.myroms.org/svn/src/trunk
SVN Revision : 1014

Local Root : /vortexfs1/scratch/gxu/ROMS_test/Source
Header Dir : /vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include
Header file : gauss_mound.h
Analytical Dir : /vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include

Resolution, Grid 01: 128x140x10, Parallel Nodes: 1, Tiling: 1x1


Physical Parameters, Grid: 01
=============================

160 ntimes Number of timesteps for 3-D equations.
90.000 dt Timestep size (s) for 3-D equations.
30 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.
1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.
0 nRST Number of timesteps between the writing of data
into restart fields.
1 ninfo Number of timesteps between print of information
to standard output.
T ldefout Switch to create a new output NetCDF file(s).
5 nHIS Number of timesteps between the writing fields
into history file.
0 nQCK Number of timesteps between the writing fields
into quicksave file.
F LuvSponge Turning OFF sponge on horizontal momentum.
F LtracerSponge(01) Turning OFF sponge on tracer 01: temp
F LtracerSponge(02) Turning OFF sponge on tracer 02: salt
1.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)
for tracer 01: temp
1.0000E-06 Akt_bak(02) Background vertical mixing coefficient (m2/s)
for tracer 02: salt
1.0000E-05 Akv_bak Background vertical mixing coefficient (m2/s)
for momentum.
3.0000E-04 rdrg Linear bottom drag coefficient (m/s).
3.0000E-03 rdrg2 Quadratic bottom drag coefficient.
2.0000E-02 Zob Bottom roughness (m).
2 Vtransform S-coordinate transformation equation.
4 Vstretching S-coordinate stretching function.
3.0000E+00 theta_s S-coordinate surface control parameter.
0.0000E+00 theta_b S-coordinate bottom control parameter.
25.000 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
1025.000 rho0 Mean density (kg/m3) for Boussinesq approximation.
0.000 dstart Time-stamp assigned to model initialization (days).
0.00 time_ref Reference time for units attribute (yyyymmdd.dd)
0.0000E+00 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
0.0000E+00 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt
0.0000E+00 Znudg Nudging/relaxation time scale (days)
for free-surface.
0.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.
0.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.
5.0000E+02 obcfac Factor between passive and active
open boundary conditions.
F VolCons(1) NLM western edge boundary volume conservation.
F VolCons(2) NLM southern edge boundary volume conservation.
F VolCons(3) NLM eastern edge boundary volume conservation.
F VolCons(4) NLM northern edge boundary volume conservation.
14.000 T0 Background potential temperature (C) constant.
35.000 S0 Background salinity (PSU) constant.
1027.000 R0 Background density (kg/m3) used in linear Equation
of State.
1.7000E-04 Tcoef Thermal expansion coefficient (1/Celsius).
0.0000E+00 Scoef Saline contraction coefficient (1/PSU).
1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
F LuvSrc Turning OFF momentum point Sources/Sinks.
F LwSrc Turning OFF volume influx point Sources/Sinks.
F LtracerSrc(01) Turning OFF point Sources/Sinks on tracer 01: temp
F LtracerSrc(02) Turning OFF point Sources/Sinks on tracer 02: salt
F LsshCLM Turning OFF processing of SSH climatology.
F Lm2CLM Turning OFF processing of 2D momentum climatology.
F Lm3CLM Turning OFF processing of 3D momentum climatology.
F LtracerCLM(01) Turning OFF processing of climatology tracer 01: temp
F LtracerCLM(02) Turning OFF processing of climatology tracer 02: salt
F LnudgeM2CLM Turning OFF nudging of 2D momentum climatology.
F LnudgeM3CLM Turning OFF nudging of 3D momentum climatology.
F LnudgeTCLM(01) Turning OFF nudging of climatology tracer 01: temp
F LnudgeTCLM(02) Turning OFF nudging of climatology tracer 02: salt

T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idOvel) Write out omega vertical velocity.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idTvar) Write out tracer 02: salt

Output/Input Files:

Output Restart File: roms_rst.nc
Output History File: gauss_mound_his_coarse.nc
Input Grid File: ./input/gauss_mound_grid_uniform_coarse2.nc
Nesting grid connectivity File: ./input/gauss_mound_ngc_refine2.nc
Input Nonlinear Initial File: ./input/gauss_mound_ini_coarse2.nc
ROMS I/O variables Metadata File: ./include/varinfo.dat

Resolution, Grid 02: 110x160x10, Parallel Nodes: 1, Tiling: 1x1


Physical Parameters, Grid: 02
=============================

1600 ntimes Number of timesteps for 3-D equations.
9.000 dt Timestep size (s) for 3-D equations.
30 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.
1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.
0 nRST Number of timesteps between the writing of data
into restart fields.
1 ninfo Number of timesteps between print of information
to standard output.
T ldefout Switch to create a new output NetCDF file(s).
50 nHIS Number of timesteps between the writing fields
into history file.
0 nQCK Number of timesteps between the writing fields
into quicksave file.
F LuvSponge Turning OFF sponge on horizontal momentum.
F LtracerSponge(01) Turning OFF sponge on tracer 01: temp
F LtracerSponge(02) Turning OFF sponge on tracer 02: salt
1.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)
for tracer 01: temp
1.0000E-06 Akt_bak(02) Background vertical mixing coefficient (m2/s)
for tracer 02: salt
1.0000E-05 Akv_bak Background vertical mixing coefficient (m2/s)
for momentum.
3.0000E-04 rdrg Linear bottom drag coefficient (m/s).
3.0000E-03 rdrg2 Quadratic bottom drag coefficient.
2.0000E-02 Zob Bottom roughness (m).
2 Vtransform S-coordinate transformation equation.
4 Vstretching S-coordinate stretching function.
3.0000E+00 theta_s S-coordinate surface control parameter.
0.0000E+00 theta_b S-coordinate bottom control parameter.
25.000 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
1025.000 rho0 Mean density (kg/m3) for Boussinesq approximation.
0.000 dstart Time-stamp assigned to model initialization (days).
0.00 time_ref Reference time for units attribute (yyyymmdd.dd)
0.0000E+00 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
0.0000E+00 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt
0.0000E+00 Znudg Nudging/relaxation time scale (days)
for free-surface.
0.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.
0.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.
5.0000E+02 obcfac Factor between passive and active
open boundary conditions.
F VolCons(1) NLM western edge boundary volume conservation.
F VolCons(2) NLM southern edge boundary volume conservation.
F VolCons(3) NLM eastern edge boundary volume conservation.
F VolCons(4) NLM northern edge boundary volume conservation.
14.000 T0 Background potential temperature (C) constant.
35.000 S0 Background salinity (PSU) constant.
1027.000 R0 Background density (kg/m3) used in linear Equation
of State.
1.7000E-04 Tcoef Thermal expansion coefficient (1/Celsius).
0.0000E+00 Scoef Saline contraction coefficient (1/PSU).
1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
F LuvSrc Turning OFF momentum point Sources/Sinks.
F LwSrc Turning OFF volume influx point Sources/Sinks.
F LtracerSrc(01) Turning OFF point Sources/Sinks on tracer 01: temp
F LtracerSrc(02) Turning OFF point Sources/Sinks on tracer 02: salt
F LsshCLM Turning OFF processing of SSH climatology.
F Lm2CLM Turning OFF processing of 2D momentum climatology.
F Lm3CLM Turning OFF processing of 3D momentum climatology.
F LtracerCLM(01) Turning OFF processing of climatology tracer 01: temp
F LtracerCLM(02) Turning OFF processing of climatology tracer 02: salt
F LnudgeM2CLM Turning OFF nudging of 2D momentum climatology.
F LnudgeM3CLM Turning OFF nudging of 3D momentum climatology.
F LnudgeTCLM(01) Turning OFF nudging of climatology tracer 01: temp
F LnudgeTCLM(02) Turning OFF nudging of climatology tracer 02: salt

T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idOvel) Write out omega vertical velocity.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idTvar) Write out tracer 02: salt

Output/Input Files:

Output Restart File: roms_rst.nc
Output History File: gauss_mound_his_fine.nc
Input Grid File: ./input/gauss_mound_grid_uniform_fine2.nc
Nesting grid connectivity File: ./input/gauss_mound_ngc_refine2.nc
Input Nonlinear Initial File: ./input/gauss_mound_ini_fine2.nc
ROMS I/O variables Metadata File: ./include/varinfo.dat

Tile partition information for Grid 01: 128x140x10 tiling: 1x1

tile Istr Iend Jstr Jend Npts

0 1 128 1 140 179200

Tile partition information for Grid 02: 110x160x10 tiling: 1x1

tile Istr Iend Jstr Jend Npts

0 1 110 1 160 176000

Tile minimum and maximum fractional coordinates for Grid 01:
(interior points only)

tile Xmin Xmax Ymin Ymax grid

0 0.50 128.50 0.50 140.50 RHO-points

0 1.00 128.00 0.50 140.50 U-points

0 0.50 128.50 1.00 140.00 V-points

Tile minimum and maximum fractional coordinates for Grid 02:
(interior points only)

tile Xmin Xmax Ymin Ymax grid

0 0.50 110.50 0.50 160.50 RHO-points

0 1.00 110.00 0.50 160.50 U-points

0 0.50 110.50 1.00 160.00 V-points

Maximum halo size in XI and ETA directions:

HaloSizeI(1) = 417
HaloSizeJ(1) = 453
TileSide(1) = 145
TileSize(1) = 19285


Maximum halo size in XI and ETA directions:

HaloSizeI(2) = 375
HaloSizeJ(2) = 525
TileSide(2) = 169
TileSize(2) = 20111


Tracer Advection Scheme: NLM
========================

Variable Grid Horizontal Vertical
--------- ---- ------------ ------------

temp 1 Upstream3 Centered4
2 e.F:mp_bcas

salt 1 Upstream3 Centered4
2 ti

Akima4 Fourth-order Akima advection
Centered2 Second-order centered differences advection
Centered4 Fourth-order centered differences advection
HSIMT Third High-order Spatial Inteporlation at Middle Time Advection with TVD limiter
MPDATA Multidimensional Positive Definite Advection Algorithm, recursive method
Splines Conservative Parabolic Splines Reconstruction Advection (only vertical; not recommended)
Split_U3 Split third-order Upstream Advection
Upstream3 Third-order Upstream-biased Advection (only horizontal)


Lateral Boundary Conditions: NLM
============================

Variable Grid West Edge South Edge East Edge North Edge
--------- ---- ---------- ---------- ---------- ----------

zeta 1 Chapman Imp Chapman Imp Chapman Imp Chapman Imp
2 Nested Nested Nested Nested

ubar 1 Shchepetkin Shchepetkin Shchepetkin Shchepetkin
2 Nested Nested Nested Nested

vbar 1 Shchepetkin Shchepetkin Shchepetkin Shchepetkin
2 Nested Nested Nested Nested

u 1 Radiation Radiation Radiation Radiation
2 Nested Nested Nested Nested

v 1 Radiation Radiation Radiation Radiation
2 Nested Nested Nested Nested

temp 1 Radiation Radiation Radiation Radiation
2 Nested Nested Nested Nested

salt 1 Gradient Gradient Gradient Gradient
2 Nested Nested Nested Nested

Activated C-preprocessing Options:

GAUSSIAN_MOUND A Gaussian Mound Collapsing and Generating Surface Gravity Waves
ANA_BTFLUX Analytical kinematic bottom temperature flux
ANA_FSOBC Analytical free-surface boundary conditions
ANA_M2OBC Analytical 2D momentum boundary conditions
ANA_M3OBC Analytical 3D momentum boundary conditions
ANA_SMFLUX Analytical kinematic surface momentum flux
ANA_STFLUX Analytical kinematic surface temperature flux
ANA_TOBC Analytical tracers boundary conditions
ANA_VMIX Analytical vertical mixing coefficients
!ASSEMBLE_ALL... Using mpi_isend/mpi_recv in mp_assemble routine
ASSUMED_SHAPE Using assumed-shape arrays
!BOUNDARY_ALLGATHER Using mpi_allreduce in mp_boundary routine
!COLLECT_ALL... Using mpi_isend/mpi_recv in mp_collect routine
DJ_GRADPS Parabolic Splines density Jacobian (Shchepetkin, 2002)
DOUBLE_PRECISION Double precision arithmetic numerical kernel.
MPI MPI distributed-memory configuration
NESTING Nesting grids: Composite and Refinement
NONLINEAR Nonlinear Model
!NONLIN_EOS Linear Equation of State for seawater
!ONE_WAY Two-way nesting in refinement grids
POWER_LAW Power-law shape time-averaging barotropic filter
PROFILE Time profiling activated
RADIATION_2D Use tangential phase speed in radiation conditions
REDUCE_ALLGATHER Using mpi_allgather in mp_reduce routine
!RST_SINGLE Double precision fields in restart NetCDF file
SOLVE3D Solving 3D Primitive Equations
UV_ADV Advection of momentum
UV_COR Coriolis term
UV_U3HADVECTION Third-order upstream horizontal advection of 3D momentum
UV_C4VADVECTION Fourth-order centered vertical advection of momentum
UV_QDRAG Quadratic bottom stress
VAR_RHO_2D Variable density barotropic mode

Process Information:

Node # 0 (pid= 150568) is active.

INITIAL: Configuring and initializing forward nonlinear model ...
*******

GET_GRID - angle between XI-axis and EAST: angler
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 0.00000000E+00 Max = 0.00000000E+00)
GET_GRID - reciprocal XI-grid spacing: pm
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 2.50000000E-04 Max = 2.50000000E-04)
GET_GRID - reciprocal ETA-grid spacing: pn
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 2.50000000E-04 Max = 2.50000000E-04)
GET_GRID - Coriolis parameter at RHO-points: f
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 1.04909955E-04 Max = 1.04909955E-04)
GET_GRID - bathymetry at RHO-points: h
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 1.00000000E+02 Max = 1.00000000E+02)
GET_GRID - x-location of RHO-points: x-rho
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = -2.00000000E+03 Max = 5.14000000E+05)
GET_GRID - y-location of RHO-points: y_rho
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = -2.00000000E+03 Max = 5.62000000E+05)
GET_GRID - x-location of PSI-points: x_psi
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 0.00000000E+00 Max = 5.12000000E+05)
GET_GRID - y-location of PSI-points: y-psi
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 0.00000000E+00 Max = 5.60000000E+05)
GET_GRID - x-location of U-points: x_u
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 0.00000000E+00 Max = 5.12000000E+05)
GET_GRID - y-location of U-points: y_u
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = -2.00000000E+03 Max = 5.62000000E+05)
GET_GRID - x-location of V-points: x_v
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = -2.00000000E+03 Max = 5.14000000E+05)
GET_GRID - y-location of V-points: y_v
(Grid = 01, File: ./input/gauss_mound_grid_uniform_coarse2.nc)
(Min = 0.00000000E+00 Max = 5.60000000E+05)

GET_GRID - angle between XI-axis and EAST: angler
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 0.00000000E+00 Max = 0.00000000E+00)
GET_GRID - reciprocal XI-grid spacing: pm
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.25000000E-03 Max = 1.25000000E-03)
GET_GRID - reciprocal ETA-grid spacing: pn
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.25000000E-03 Max = 1.25000000E-03)
GET_GRID - Coriolis parameter at RHO-points: f
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.04909955E-04 Max = 1.04909955E-04)
GET_GRID - bathymetry at RHO-points: h
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.00000000E+02 Max = 1.00000000E+02)
GET_GRID - x-location of RHO-points: x-rho
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.19600000E+05 Max = 2.08400000E+05)
GET_GRID - y-location of RHO-points: y_rho
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.31600000E+05 Max = 2.60400000E+05)
GET_GRID - x-location of PSI-points: x_psi
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.20000000E+05 Max = 2.08000000E+05)
GET_GRID - y-location of PSI-points: y-psi
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.32000000E+05 Max = 2.60000000E+05)
GET_GRID - x-location of U-points: x_u
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.20000000E+05 Max = 2.08000000E+05)
GET_GRID - y-location of U-points: y_u
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.31600000E+05 Max = 2.60400000E+05)
GET_GRID - x-location of V-points: x_v
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.19600000E+05 Max = 2.08400000E+05)
GET_GRID - y-location of V-points: y_v
(Grid = 02, File: ./input/gauss_mound_grid_uniform_fine2.nc)
(Min = 1.32000000E+05 Max = 2.60000000E+05)

Vertical S-coordinate System, Grid 01:

level S-coord Cs-curve Z at hmin at hc half way at hmax

10 0.0000000 0.0000000 0.000 0.000 0.000 0.000
9 -0.1000000 -0.0050000 -2.400 -1.313 -2.400 -2.400
8 -0.2000000 -0.0204535 -5.636 -2.756 -5.636 -5.636
7 -0.3000000 -0.0477616 -9.821 -4.347 -9.821 -9.821
6 -0.4000000 -0.0894007 -15.152 -6.118 -15.152 -15.152
5 -0.5000000 -0.1491465 -21.932 -8.114 -21.932 -21.932
4 -0.6000000 -0.2324164 -30.593 -10.405 -30.593 -30.593
3 -0.7000000 -0.3467612 -41.741 -13.085 -41.741 -41.741
2 -0.8000000 -0.5025493 -56.204 -16.282 -56.204 -56.204
1 -0.9000000 -0.7139071 -75.113 -20.174 -75.113 -75.113
0 -1.0000000 -1.0000000 -100.000 -25.000 -100.000 -100.000

Vertical S-coordinate System, Grid 02:

level S-coord Cs-curve Z at hmin at hc half way at hmax

10 0.0000000 0.0000000 0.000 0.000 0.000 0.000
9 -0.1000000 -0.0050000 -2.400 -1.313 -2.400 -2.400
8 -0.2000000 -0.0204535 -5.636 -2.756 -5.636 -5.636
7 -0.3000000 -0.0477616 -9.821 -4.347 -9.821 -9.821
6 -0.4000000 -0.0894007 -15.152 -6.118 -15.152 -15.152
5 -0.5000000 -0.1491465 -21.932 -8.114 -21.932 -21.932
4 -0.6000000 -0.2324164 -30.593 -10.405 -30.593 -30.593
3 -0.7000000 -0.3467612 -41.741 -13.085 -41.741 -41.741
2 -0.8000000 -0.5025493 -56.204 -16.282 -56.204 -56.204
1 -0.9000000 -0.7139071 -75.113 -20.174 -75.113 -75.113
0 -1.0000000 -1.0000000 -100.000 -25.000 -100.000 -100.000

Time Splitting Weights for Grid 01: ndtfast = 30 nfast = 42
==================================

Primary Secondary Accumulated to Current Step

1-0.0008094437383769 0.0333333333333333-0.0008094437383769 0.0333333333333333
2-0.0014053566728197 0.0333603147912792-0.0022148004111966 0.0666936481246126
3-0.0017877524645903 0.0334071600137066-0.0040025528757869 0.1001008081383191
4-0.0019566842408176 0.0334667517625262-0.0059592371166046 0.1335675599008453
5-0.0019122901320372 0.0335319745705535-0.0078715272486418 0.1670995344713988
6-0.0016548570247459 0.0335957175749547-0.0095263842733877 0.2006952520463536
7-0.0011849025289723 0.0336508794757796-0.0107112868023600 0.2343461315221331
8-0.0005032751608631 0.0336903762267453-0.0112145619632232 0.2680365077488784
9 0.0003887272597151 0.0337071520654408-0.0108258347035081 0.3017436598143192
10 0.0014892209965583 0.0336941944901169-0.0093366137069498 0.3354378543044362
11 0.0027955815694920 0.0336445537902317-0.0065410321374578 0.3690824080946679
12 0.0043042707117221 0.0335513677379153-0.0022367614257356 0.4026337758325831
13 0.0060106451121704 0.0334078920475245 0.0037738836864348 0.4360416678801076
14 0.0079087469427945 0.0332075372104522 0.0116826306292293 0.4692492050905598
15 0.0099910761708920 0.0329439123123590 0.0216737068001213 0.5021931174029188
16 0.0122483446563884 0.0326108764399960 0.0339220514565097 0.5348039938429148
17 0.0146692120341107 0.0322025982847830 0.0485912634906204 0.5670065921276978
18 0.0172400033810439 0.0317136245503127 0.0658312668716643 0.5987202166780105
19 0.0199444086685725 0.0311389577709445 0.0857756755402368 0.6298591744489550
20 0.0227631639997064 0.0304741441486588 0.1085388395399432 0.6603333185976138
21 0.0256737146312911 0.0297153720153352 0.1342125541712342 0.6900486906129490
22 0.0286498597812016 0.0288595815276255 0.1628624139524359 0.7189082721405746
23 0.0316613792205220 0.0279045862015855 0.1945237931729578 0.7468128583421600
24 0.0346736416507075 0.0268492068942347 0.2291974348236653 0.7736620652363948
25 0.0376471948657328 0.0256934188392112 0.2668446296893981 0.7993554840756060
26 0.0405373376992232 0.0244385123436867 0.3073819673886213 0.8237939964192927
27 0.0432936737565710 0.0230872677537126 0.3506756411451924 0.8468812641730054
28 0.0458596469320356 0.0216441452951603 0.3965352880772280 0.8685254094681656
29 0.0481720587108284 0.0201154903974257 0.4447073467880565 0.8886408998655914
30 0.0501605672561820 0.0185097551070648 0.4948679140442384 0.9071506549726561
31 0.0517471682814030 0.0168377361985254 0.5466150823256415 0.9239883911711815
32 0.0528456577069106 0.0151128305891453 0.5994607400325521 0.9391012217603267
33 0.0533610761022577 0.0133513086655816 0.6528218161348098 0.9524525304259084
34 0.0531891349131379 0.0115726061288397 0.7060109510479478 0.9640251365547481
35 0.0522156244733761 0.0097996349650684 0.7582265755213239 0.9738247715198165
36 0.0503158038019030 0.0080591141492892 0.8085423793232269 0.9818838856691057
37 0.0473537721847153 0.0063819206892258 0.8558961515079423 0.9882658063583315
38 0.0431818225418188 0.0048034616164019 0.8990779740497611 0.9930692679747334
39 0.0376397765791564 0.0033640675316746 0.9367177506289175 0.9964333355064080
40 0.0305543017255206 0.0021094083123694 0.9672720523544381 0.9985427438187774
41 0.0217382098544504 0.0010909315881854 0.9890102622088885 0.9996336754069628
42 0.0109897377911118 0.0003663245930371 1.0000000000000004 0.9999999999999999

ndtfast, nfast = 30 42 nfast/ndtfast = 1.40000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):

1.000000000000 1.047601458608 0.523800729304 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.18933

Time Splitting Weights for Grid 02: ndtfast = 30 nfast = 42
==================================

Primary Secondary Accumulated to Current Step

1-0.0008094437383769 0.0333333333333333-0.0008094437383769 0.0333333333333333
2-0.0014053566728197 0.0333603147912792-0.0022148004111966 0.0666936481246126
3-0.0017877524645903 0.0334071600137066-0.0040025528757869 0.1001008081383191
4-0.0019566842408176 0.0334667517625262-0.0059592371166046 0.1335675599008453
5-0.0019122901320372 0.0335319745705535-0.0078715272486418 0.1670995344713988
6-0.0016548570247459 0.0335957175749547-0.0095263842733877 0.2006952520463536
7-0.0011849025289723 0.0336508794757796-0.0107112868023600 0.2343461315221331
8-0.0005032751608631 0.0336903762267453-0.0112145619632232 0.2680365077488784
9 0.0003887272597151 0.0337071520654408-0.0108258347035081 0.3017436598143192
10 0.0014892209965583 0.0336941944901169-0.0093366137069498 0.3354378543044362
11 0.0027955815694920 0.0336445537902317-0.0065410321374578 0.3690824080946679
12 0.0043042707117221 0.0335513677379153-0.0022367614257356 0.4026337758325831
13 0.0060106451121704 0.0334078920475245 0.0037738836864348 0.4360416678801076
14 0.0079087469427945 0.0332075372104522 0.0116826306292293 0.4692492050905598
15 0.0099910761708920 0.0329439123123590 0.0216737068001213 0.5021931174029188
16 0.0122483446563884 0.0326108764399960 0.0339220514565097 0.5348039938429148
17 0.0146692120341107 0.0322025982847830 0.0485912634906204 0.5670065921276978
18 0.0172400033810439 0.0317136245503127 0.0658312668716643 0.5987202166780105
19 0.0199444086685725 0.0311389577709445 0.0857756755402368 0.6298591744489550
20 0.0227631639997064 0.0304741441486588 0.1085388395399432 0.6603333185976138
21 0.0256737146312911 0.0297153720153352 0.1342125541712342 0.6900486906129490
22 0.0286498597812016 0.0288595815276255 0.1628624139524359 0.7189082721405746
23 0.0316613792205220 0.0279045862015855 0.1945237931729578 0.7468128583421600
24 0.0346736416507075 0.0268492068942347 0.2291974348236653 0.7736620652363948
25 0.0376471948657328 0.0256934188392112 0.2668446296893981 0.7993554840756060
26 0.0405373376992232 0.0244385123436867 0.3073819673886213 0.8237939964192927
27 0.0432936737565710 0.0230872677537126 0.3506756411451924 0.8468812641730054
28 0.0458596469320356 0.0216441452951603 0.3965352880772280 0.8685254094681656
29 0.0481720587108284 0.0201154903974257 0.4447073467880565 0.8886408998655914
30 0.0501605672561820 0.0185097551070648 0.4948679140442384 0.9071506549726561
31 0.0517471682814030 0.0168377361985254 0.5466150823256415 0.9239883911711815
32 0.0528456577069106 0.0151128305891453 0.5994607400325521 0.9391012217603267
33 0.0533610761022577 0.0133513086655816 0.6528218161348098 0.9524525304259084
34 0.0531891349131379 0.0115726061288397 0.7060109510479478 0.9640251365547481
35 0.0522156244733761 0.0097996349650684 0.7582265755213239 0.9738247715198165
36 0.0503158038019030 0.0080591141492892 0.8085423793232269 0.9818838856691057
37 0.0473537721847153 0.0063819206892258 0.8558961515079423 0.9882658063583315
38 0.0431818225418188 0.0048034616164019 0.8990779740497611 0.9930692679747334
39 0.0376397765791564 0.0033640675316746 0.9367177506289175 0.9964333355064080
40 0.0305543017255206 0.0021094083123694 0.9672720523544381 0.9985427438187774
41 0.0217382098544504 0.0010909315881854 0.9890102622088885 0.9996336754069628
42 0.0109897377911118 0.0003663245930371 1.0000000000000004 0.9999999999999999

ndtfast, nfast = 30 42 nfast/ndtfast = 1.40000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):

1.000000000000 1.047601458608 0.523800729304 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.18933

Metrics information for Grid 01:
===============================

Minimum X-grid spacing, DXmin = 4.00000000E+00 km
Maximum X-grid spacing, DXmax = 4.00000000E+00 km
Minimum Y-grid spacing, DYmin = 4.00000000E+00 km
Maximum Y-grid spacing, DYmax = 4.00000000E+00 km
Minimum Z-grid spacing, DZmin = 2.40000180E+00 m
Maximum Z-grid spacing, DZmax = 2.48874290E+01 m

Minimum barotropic Courant Number = 3.32208519E-02
Maximum barotropic Courant Number = 3.32208519E-02
Maximum Coriolis Courant Number = 9.44189596E-03


Metrics information for Grid 02:
===============================

Minimum X-grid spacing, DXmin = 8.00000000E-01 km
Maximum X-grid spacing, DXmax = 8.00000000E-01 km
Minimum Y-grid spacing, DYmin = 8.00000000E-01 km
Maximum Y-grid spacing, DYmax = 8.00000000E-01 km
Minimum Z-grid spacing, DZmin = 2.40000180E+00 m
Maximum Z-grid spacing, DZmax = 2.48874290E+01 m

Minimum barotropic Courant Number = 1.66104259E-02
Maximum barotropic Courant Number = 1.66104259E-02
Maximum Coriolis Courant Number = 9.44189596E-04


Refined Nested Grid(s) Information:
==================================

Refined Donor Refined Timestep Refined
Grid Grid Scale Ratio Timesteps

02 01 05 10.00000 10

WARNING: Usually the number of Refined Timesteps must be the same
as the Refined Scale for numerical stability.


NLM: GET_STATE - Reading state initial conditions, 0001-01-01 00:00:00.00
(Grid 01, t = 0.0000, File: gauss_mound_ini_coarse2.nc, Rec=0001, Index=1)
- free-surface
(Min = 4.87527721-159 Max = 1.96039735E+00)
- vertically integrated u-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- vertically integrated v-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- u-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- v-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- potential temperature
(Min = 2.00000000E+00 Max = 2.00000000E+00)
- salinity
(Min = 3.50000000E+01 Max = 3.50000000E+01)

NLM: GET_STATE - Reading state initial conditions, 0001-01-01 00:00:00.00
(Grid 02, t = 0.0000, File: gauss_mound_ini_fine2.nc, Rec=0001, Index=1)
- free-surface
(Min = 8.70062615E-44 Max = 2.93293903E-03)
- vertically integrated u-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- vertically integrated v-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- u-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- v-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- potential temperature
(Min = 2.00000000E+00 Max = 2.00000000E+00)
- salinity
(Min = 3.50000000E+01 Max = 3.50000000E+01)

Basin information for Grid 01:

Maximum grid stiffness ratios: rx0 = 0.000000E+00 (Beckmann and Haidvogel)
rx1 = 0.000000E+00 (Haney)

Initial domain volumes: TotVolume = 2.8672000000E+13 m3
MinCellVol = 3.8400028818E+07 m3
MaxCellVol = 3.9819886406E+08 m3
Max/Min = 1.0369754303E+01

Basin information for Grid 02:

Maximum grid stiffness ratios: rx0 = 0.000000E+00 (Beckmann and Haidvogel)
rx1 = 0.000000E+00 (Haney)

Initial domain volumes: TotVolume = 1.1264000000E+12 m3
MinCellVol = 1.5360011527E+06 m3
MaxCellVol = 1.5927954562E+07 m3
Max/Min = 1.0369754303E+01

NL ROMS/TOMS: started time-stepping: (Grid: 01 TimeSteps: 000000000001 - 000000000160)
NL ROMS/TOMS: started time-stepping: (Grid: 02 TimeSteps: 000000000001 - 000000001600)


TIME-STEP YYYY-MM-DD hh:mm:ss.ss KINETIC_ENRG POTEN_ENRG TOTAL_ENRG NET_VOLUME Grid
C => (i,j,k) Cu Cv Cw Max Speed

0 0001-01-01 00:00:00.00 0.000000E+00 4.974433E+02 4.974433E+02 2.867451E+13 01
(000,000,00) 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
DEF_HIS - creating history file, Grid 01: gauss_mound_his_coarse.nc
WRT_HIS - wrote history fields (Index=1,1) in record = 0000001 01
0 0001-01-01 00:00:00.00 0.000000E+00 4.973989E+02 4.973989E+02 1.126400E+12 02
(000,000,00) 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
DEF_HIS - creating history file, Grid 02: gauss_mound_his_fine.nc
WRT_HIS - wrote history fields (Index=1,1) in record = 0000001 02
1 0001-01-01 00:00:09.00 7.689182E-12 -4.449529+163 -4.449529+163 1.126400E+12 02
(110,160,03) 1.612830E-06 5.197268E-07 0.000000E+00 1.726743E-04
Found Error: 01 Line: 299 Source: ROMS/Nonlinear/main3d.F
Found Error: 01 Line: 300 Source: ROMS/Drivers/nl_ocean.h

Elapsed CPU time (seconds):

Node # 0 CPU: 0.414
Total: 0.414

Nonlinear model elapsed CPU time profile, Grid: 01

Allocation and array initialization .............. 0.055 (13.4125 %)
Ocean state initialization ....................... 0.048 (11.6433 %)
Reading of input data ............................ 0.000 ( 0.0015 %)
Processing of input data ......................... 0.000 ( 0.0239 %)
Computation of vertical boundary conditions ...... 0.000 ( 0.0184 %)
Computation of global information integrals ...... 0.002 ( 0.4755 %)
Writing of output data ........................... 0.016 ( 3.9795 %)
Model 2D kernel .................................. 0.094 (22.7359 %)
2D/3D coupling, vertical metrics ................. 0.003 ( 0.6921 %)
Omega vertical velocity .......................... 0.002 ( 0.5872 %)
Equation of state for seawater ................... 0.002 ( 0.5974 %)
3D equations right-side terms .................... 0.005 ( 1.2068 %)
3D equations predictor step ...................... 0.008 ( 2.0261 %)
Pressure gradient ................................ 0.003 ( 0.7622 %)
Corrector time-step for 3D momentum .............. 0.005 ( 1.1918 %)
Corrector time-step for tracers .................. 0.006 ( 1.3855 %)
Nesting algorithm ................................ 0.005 ( 1.1976 %)
Reading model state vector ....................... 0.010 ( 2.3803 %)
Total: 0.266 64.3177

Nonlinear model message Passage profile, Grid: 01

Message Passage: 2D halo exchanges ............... 0.000 ( 0.1025 %)
Message Passage: 3D halo exchanges ............... 0.000 ( 0.0082 %)
Message Passage: 4D halo exchanges ............... 0.000 ( 0.0031 %)
Message Passage: data broadcast .................. 0.000 ( 0.0677 %)
Message Passage: data reduction .................. 0.000 ( 0.0118 %)
Message Passage: data gathering .................. 0.005 ( 1.1981 %)
Message Passage: data scattering.................. 0.004 ( 0.8882 %)
Message Passage: nesting point data gathering .... 0.005 ( 1.2956 %)
Message Passage: synchronization barrier ......... 0.000 ( 0.0017 %)
Total: 0.015 3.5770

Nonlinear model elapsed CPU time profile, Grid: 02

Allocation and array initialization .............. 0.055 (13.4130 %)
Ocean state initialization ....................... 0.047 (11.4141 %)
Reading of input data ............................ 0.000 ( 0.0012 %)
Processing of input data ......................... 0.000 ( 0.0406 %)
Computation of vertical boundary conditions ...... 0.000 ( 0.0172 %)
Computation of global information integrals ...... 0.004 ( 0.9984 %)
Writing of output data ........................... 0.016 ( 3.9164 %)
Model 2D kernel .................................. 0.093 (22.4635 %)
2D/3D coupling, vertical metrics ................. 0.004 ( 0.9399 %)
Omega vertical velocity .......................... 0.003 ( 0.6740 %)
Equation of state for seawater ................... 0.004 ( 0.9639 %)
3D equations right-side terms .................... 0.005 ( 1.2682 %)
3D equations predictor step ...................... 0.006 ( 1.5126 %)
Pressure gradient ................................ 0.003 ( 0.7603 %)
Corrector time-step for 3D momentum .............. 0.005 ( 1.1875 %)
Corrector time-step for tracers .................. 0.003 ( 0.7303 %)
Nesting algorithm ................................ 0.002 ( 0.3740 %)
Reading model state vector ....................... 0.009 ( 2.1064 %)
Total: 0.260 62.7816

Nonlinear model message Passage profile, Grid: 02

Message Passage: 2D halo exchanges ............... 0.000 ( 0.0962 %)
Message Passage: 3D halo exchanges ............... 0.000 ( 0.0080 %)
Message Passage: 4D halo exchanges ............... 0.000 ( 0.0027 %)
Message Passage: data broadcast .................. 0.000 ( 0.0631 %)
Message Passage: data reduction .................. 0.000 ( 0.0044 %)
Message Passage: data gathering .................. 0.005 ( 1.2257 %)
Message Passage: data scattering.................. 0.003 ( 0.7685 %)
Message Passage: nesting point data gathering .... 0.002 ( 0.4144 %)
Total: 0.011 2.5829

Unique code regions profiled ..................... 0.526 127.0993 %
Residual, non-profiled code ...................... -0.112 -27.0993 %


All percentages are with respect to total time = 0.414


>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Dynamic and Automatic memory (MB) usage for Grid 01: 128x140x10 tiling: 1x1

tile Dynamic Automatic USAGE MPI-Buffers

0 65.28 12.27 77.56 1.70

SUM 65.28 12.27 77.56 1.70

Dynamic and Automatic memory (MB) usage for Grid 02: 110x160x10 tiling: 1x1

tile Dynamic Automatic USAGE MPI-Buffers

0 67.56 12.08 79.63 1.77

SUM 67.56 12.08 79.63 1.77

TOTAL 132.84 24.35 157.19 3.47

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

ROMS/TOMS - Output NetCDF summary for Grid 01:
number of time records written in HISTORY file = 00000001

ROMS/TOMS - Output NetCDF summary for Grid 02:
number of time records written in HISTORY file = 00000001

Analytical header files used:

/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_btflux.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_fsobc.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_m2obc.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_m3obc.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_smflux.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_stflux.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_tobc.h
/vortexfs1/scratch/gxu/ROMS_test/gauss_mound_nest/include/ana_vmix.h
Found Error: 01 Line: 334 Source: ROMS/Utility/close_io.F

ROMS/TOMS - Blows up ................ exit_flag: 1

xupeng66
Posts: 79
Joined: Sat Mar 06, 2010 3:38 pm
Location: University of Washington

Re: inconsistent explicit time-step splitting in two-way nesting

#4 Unread post by xupeng66 »

Hello,

I think I have found the cause of problems. It turns out that I forgot to specify the horizontal and vertical advection schemes for temperature for the fine grid. I feel frustrated that it took me so long to spot such a simple mistake in the model setup. The roms.in file I used for the nested simulation was converted from the one I used for single-grid simulations. I thought I made all the changes needed but apparently I had missed something very important. This is good learning experience for me, though.

Cheers!

Post Reply